

МЕТОДИЧНІ ВКАЗІВКИ що до виконання лабораторних робіт та практичних занять з дисципліни

«КОМПЮТЕРНА СХЕМОТЕХНІКА ТА АРХІТЕКТУРА КОМП'ЮТЕРІВ»

для студентів спеціальності 122,126

частина 2

Дніпро НМетАУ - 2018

СОДЕРЖАНИЕ

Лабораторная	работа №	1	64
Лабораторная	работа №	2	72
Лабораторная	работа №	3	
Лабораторная	работа №	4	
Лабораторная	работа №	5	
Лабораторная	работа №	6	92
Лабораторная	работа № 7		97
Лабораторная	работа № 8		102
Лабораторная	работа № 9		106
Список литера	туры		110

ЛАБОРАТОРНАЯ РАБОТА №1

Тема: Ознакомление с пакетом EWB. Цель работы: Ознакомиться и научиться работать в пакете "Electronics Workbench".

Ход работы:

Ознакомиться с пакетом "Electronics Workbench" (см описание пакета) Эксперимент 1

- 1 Выполнить измерения на постоянном токе. Результаты занести в отчет.
- 2 Выполнить измерения на переменном (частота 60 Гц и 6 КГц) токе. Результаты занести в отчет.
- 3 Объяснить полученные результаты

Эксперимент 2

1 Собрать схему иллюстрирующую работу конденсатора в цепи постоянного и переменного тока.

2 Выполнить измерения на постоянном токе. Результаты занести в отчет.

3 Выполнить измерения на переменном (частота 60 Гц и 6 КГц) токе. Результаты занести в отчет.

4 Объяснить полученные результаты

Эксперимент 3

1Собрать схему иллюстрирующую работу катушки индуктивности в цепи постоянного и переменного тока.

2 Выполнить измерения на постоянном токе. Результаты занести в отчет.

3 Выполнить измерения на переменном (частота 60 Гц и 6 КГц) токе. Результаты занести в отчет.

4 Объяснить полученные результаты

Эксперимент 4

- 1 Собрать схему иллюстрирующую закон Ома.
- 2 Результаты занести в отчет.

Эксперимент 5

- 1 Собрать схему иллюстрирующую первый закон Кирхгофа.
- 2 Результаты занести в отчет.

Эксперимент 6

- 1 Собрать схему иллюстрирующую второй закон Кирхгофа.
- 2 Результаты занести в отчет.

Эксперимент 7

- 2 Собрать схему иллюстрирующую работу делителя напряжения.
- 2 Результаты занести в отчет.

Вопросы

- 1 Дать определение электрического тока.
- 2 Что такое переменный ток?
- 3 Основные параметры постоянного и переменного токов
- 4 Какие пассивные элементы цепей Вам известны?
- 5 Основные параметры пассивных элементов
- 6 Свойства пассивных элементов
- 7 Назначение различных пассивных элементов

ЛАБОРАТОРНАЯ РАБОТА №2

Тема: Частотные характеристики RC и LC цепей. Цель работы: Получить и исследовать частотные характеристики RC и LC цепей

Ход работы:

Эксперимент 1.

1 Собрать фильтры низких и высоких частот по схемам изображенным на рисунках 2.1 (а, б) (С=1мкф, R= ваш порядковый номер в журнале группы, кОм)

Рисунок 2.1,а. Фильтр низких частот

Рисунок 2.1, б. Фильтр высоких частот

2. Получить амплитудно-частотную характеристику и фазово-частотную характеристику фильтров и объяснить их поведение.

3. Вычислить теоретическую частоту среза фильтров. Исследовать поведение напряжения на выходе при частоте входного сигнала в 10 раз больше частоты среза, равной частоте среза, 0.1 частоты среза. Графики и результаты измерений занести в отчет.

1. Объяснить результаты.

Эксперимент 2

1. Собрать однозвенные и двухзвенные фильтры низких и высоких частот по схемам

2. Получить амплитудно-частотную характеристику и фазово-частотную характеристики фильтров и объяснить их поведение. 3. Сравнить эффективность работы одно и двухзвенных фильтров. С помощью измерений доказать преимущество двухзвенных фильтров.

Эксперимент 3

2 Получить амплитудно-частотную характеристику и фазово-частотную характеристику фильтров и объяснить их поведение.

3 Определить полосу пропускания полосового фильтра и частоту режекции режекторного фильтра.

Эксперимент 4

1. Собрать последовательный и параллельный колебательные контуры по схемам

Electronics Workbench Professional Edition	
⊪- 0'+⊀ < ♡ ♡ 🖾 🖳 ff M	Pause
Untitled	
1 k Ohm 4 Ohm	
	E
10 nF	
	↓
739.72 us Temp: 27	
🚱 🈂 🚞 🖸 🖉	RU 🔺 😼 🛱 🐗 🌵 11:57 12.04.2010

2 Получить амплитудно-частотную характеристику и фазово-частотную характеристику контуров и объяснить их поведение. Рассчитать и экспериментально определить резонансную частоту и добротность контуров.

Вопросы

- 1. Какие характеристики ФНЧ и ФВЧ вы знаете? Поясните их физический смысл.
- 2. Какой прибор из набора необходимо использовать для получения АЧХ и ФЧХ? Что характеризуют эти характеристики?
- 3. Как теоретически определить частоту среза фильтра?
- 4. Как практически определить частоту среза по ФЧХ?
- 5. Возможно ли определить частоту среза, использую только лишь осциллограф?
- 6. Что характеризует постоянная времени? Как теоретически ее определить?
- 7. Какие отличия характеристик однозвенных и двухзвенных фильтров?
 - 8. Что такое добротность колебательного контура? Как её определить из полученных экспериментальных данных (см. эксперимент 4).

ЛАБОРАТОРНАЯ РАБОТА № 3

Тема: Полупроводниковые диоды

Цель работы: Исследовать полупроводниковый диод

Ход работы:

Эксперимент 1. Путем измерения мультиметром напряжения на диоде доказать основное свойства диода (вариант – таблица 4.3).

Эксперимент 2. Путем измерения мультиметром тока протекающего через диод доказать основное свойства диода (вариант – таблица 4.3).

Эксперимент 3. Путем измерения мультиметром статического сопротивления диода доказать основное свойства диода (вариант – таблица 3.3).

Таблица 3.3 – Типы диодов

Hower			<mark>Е</mark> 1(В), для	<mark>Е</mark> 1(В), для
помер	Библиотека	Тип диода	обратной ветви	прямой ветви
варианта			BAX	BAX
1	general1	BYM10-100	0120	010
2	general1	D1N3611GP	0240	010
3	general1	D1N4001GP	060	010
4	general1	D1N4245GP	0240	010
5	general1	D1N4383GP	0240	010
6	general1	D1N4933GP	060	010
7	general1	D1N5059GP	0240	010
8	general1	D1N5391GP	060	010
9	general1	D1N5615GP	0240	010
10	general1	D1N6478	060	010
11	general1	GF1A	060	010
12	general1	GL34A	060	010
13	general1	GP10A	060	010
14	general1	GP15A	060	010
15	general1	GP20A	060	010
16	general1	GP30A	060	010
17	general1	RGF1A	060	010
18	general1	RGF1D	0240	010
19	general1	RGP10A	060	010
20	general1	RGP20A	060	010
21	Philips	BY228	0100	010
22	Philips	BY328	0100	010
23	Philips	BY438	0100	010
24	Philips	BY448	0100	010
25	Philips	BYV95A	0300	010
26	Philips	BYV95B	0500	010
27	Philips	BYV95C	0700	010
28	Philips	BYV95D	0900	010
29	Philips	BYV95E	01100	010
30	National	1N3064	0100	010

Эксперимент 4. Снятие вольтамперной характеристики диода.

Рисунок 3.1

г). Прямая ветвь ВАХ. Соберите схему 3.1 для своего варианта. Включите схему. Последовательно устанавливая значения ЭДС источника, запишите значения напряжения U_{ПP} и тока I_{ПP} диода в таблицу.

б). Обратная ветвь ВАХ. Переключить полярность источника питания. Последовательно устанавливая значения ЭДС, запишите значения тока Іоб и напряжения U_{Ob} в таблицу.

в). По полученным данным постройте вольтамперную характеристику диода. Прямую и обратную ветви разместить на одном графике. Единицы измерения тока прямой и обратной ветвей должны быть идентичны

c). Постройте касательную к графику прямой ветви ВАХ при $I_{\Pi P} = 4$ мА и оцените дифференциальное сопротивление диода по наклону касательной. Проделайте ту же процедуру для $I_{\Pi P} = 0.4$ мА и $I_{\Pi P} = 0.2$ мА. Ответы запишите в отчет.

d). Аналогично пункту *г*) оцените дифференциальное сопротивление диода при обратном напряжении 5 В и запишите экспериментальные данные в раздел отчет. *е*). Вычислите сопротивление диода на постоянном токе $I_{\Pi P} = 4$ мА занесите результат в отчет.

ж). Определите напряжение изгиба. Результаты занесите в отчет. Напряжение изгиба определяется из вольтамперной характеристики диода, смещенного в прямом направлении, для точки, где характеристика претерпевает резкий излом.

Эксперимент 5. Получение ВАХ диода на экране осциллографа.

Соберите схему по рисунку 3.2 для своего варианта

Рисунок 3.2

Включите схему. На ВАХ, появившейся на экране осцилографа, по горизонтальной оси считывается напряжение на диоде в милливольтах (канал А, а по вертикальной - ток в миллиамперах (канал В, 1 мВ соответствует 1 мА). Обратите внимание на изгиб ВАХ. Получите ВАХ диода в режиме Expand. Получите ВАХ диода в опции Analysis. Измерьте и запишите в отчет величину напряжения изгиба.

Эксперимент 6. Получение ВАХ стабилитрона на экране осциллографа.

Соберите схему по рисунку 3.3 для своего варианта(см таблицу 3.2)

Включите схему. Определите по ВАХ Ист

Номер варианта	Библиотека	Тип стабилитрона	E1(В), для обратной ветви	E1(В), для прямой ветви	
1	General	GU 4735	0 -16	DAA 0 10	
2	General	GLL4733	010	010	
3	General	GLL4743	023	010	
4	General	SML 4735	040	010	
5	General	SML4740	0 -20	0.10	
6	General	SML4750	0 -37	0.10	
7	General	Z4KE100	0110	010	
8	General	Z4KE140	0150	010	
9	General	ZGL41-100	0110	010	
10	General	Z4KE160	0170	010	
11	General	Z4KE180	0190	010	
12	General	Z4KE200	0210	010	
13	General	ZGL41-200	0210	010	
14	Motor 1n	1N4370A	014	010	
15	Motor_1n	1N4729A	015	010	
16	Motor_bzx	BZX85C16	026	010	
17	Motor_bzx	BZX85C36	046	010	
18	Motor_bzx	BZX85C5V6	015	010	
19	Motor_bzx	BZX85C8V2	018	010	
20	Philips1	BZV37	016	010	
21	Philips1	BZV49-C10	020	010	
22	Philips1	BZV49-C20	030	010	
23	Philips1	BZV49-C30	040	010	
24	Philips1	BZV49-C56	066	010	
25	Philips1	BZV49-C68	078	010	
26	Philips1	BZV49-C9V1	020	010	
27	Philips1	BZV55-B10	020	010	
28	Philips1	BZV55-B20	030	010	
29	Philips1	BZV55-B30	040	010	
30	Philips1	BZV55-B47	057	010	

Таблица 3.2 – Типы стабилитронов

Эксперимент 9 Получение ВАХ тиристора.

Для получения ВАХ Ui изменить от 0 до 50В при фиксированных значениях Uy. Для получения обратной ветви меняется только полярность Ui

Вопросы

- 1. Сравните напряжения на диоде при прямом и обратном смещении по порядку величин. Почему они различны?
- 2. Сравнимы ли измеренные значения тока при прямом смещении с вычисленными значениями?
- 3. Сравнимы ли измеренные значения тока при обратном смещении с вычисленными значениями?
- 4. Сравните токи через диод при прямом и обратном смещении по порядку величин. Почему они различны?
- 5. Что такое ток насыщения диода?
- 6. Намного ли отличаются прямое и обратное сопротивления диода при измерении их мультиметром в режиме омметра? Можно ли по этим измерениям судить об исправности диода?
- 7. Существует ли различие между величинами сопротивления диода на переменном и постоянном токе?
- 8. Совпадают ли точки изгиба ВАХ, полученные с помощью осциллографа и построенные по результатам вычислений?
- 9. Что такое диод Шотки и его назначение.
- 10. Что такое динистор и его назначение.
- 11. Что такое тиристор и его назначение.
- 12. Что такое семистор и его назначение.

Тема: Транзисторы

Цель работы: Получить экспериментальным путем характеристики биполярного и униполярного транзисторов

Ход работы:

Эксперимент 1 Исследование зависимости тока коллектора от тока базы и напряжения база-эмиттер

В соответствии с полученным от преподавателя вариантом (таблица 4.1) выбрать транзистор из библиотеки элементов.

Таблица 4.1 – Типы транзисторов

1	I	1		T	-
Номер	Библиотека	Транзистор	Номер	Библиотека	Транзистор
варианта			варианта		
1	Seimens	T504	16	Zetex	BC856A
2	Nation13	2N3702	17	Rf_sieme	BFS17P
3	Zetex	BC107BP	18	Zetex	ZTX213
4	Zetex	BCW69	19	Nationl2	2N3707
5	Nation12	MPS6565	20	Nation13	ST571-1
6	Nation13	MPSL51	21	Zetex	ZTX657
7	Rf_sieme	BFP93A	22	Nation13	TIS93
8	Zetex	FMMTA70	23	Nationl2	2N2923
9	2n	2N2218	24	Zetex	Q2N6727
10	Zetex	BC177AP	25	Zetex	BCV72
11	Nation12	PN4141	26	Nation13	MPS3638A
12	Nation13	TN4036	27	Rf_sieme	BFP420
13	Nation12	PN4274	28	Zetex	BCX71G
14	Nation13	PN4354	29	Nation12	2N3858A
15	Zetex	BFS60	30	Zetex	ZTX796A

Примечание. Четные номера по списку – транзисторы структуры p-n-p, нечетные – n-p-n.

Собрать схемы, которые приведены на рисунке 4.1 или 4.2.

Рисунок 4.1 – Схема для анализа зависимости тока коллектора от тока базы для транзисторов n-p-n структуры

Рисунок 4.2 – Схема для анализа зависимости тока коллектора от тока базы для транзисторов p-n-р структуры

Включить схему. Записать показание приборов. По формуле β =Iк/Iб вычислите значение коэффициента β и сравните его с коэффициентом, который указан в параметрах транзистора (параметр Forward current gain coefficient).

Эксперимент 2 Построение выходной вольт-амперной характеристики

Для построения выходных ВАХ при включении транзистора по схеме с ОБ собрать схему, которая приведена на рисунке 4.3. Параметры функционального генератора (форма импульсов – треугольные): Frequency – 100 Hz, Duty cycle – 50%, Amplitude – 10 B, Offset – 9 B. Настройки осциллографа: развертка - 1.00 мс/д (Y/T), X position=0.00, Чувствительность по каналу А – 100 мв/д (Y position=0.00), режим DC. Чувствительность по каналу В – 10В/д (Y position=0.00), режим DC. Синхронизироваться в режиме AUTO, фронтом импульса.

Рисунок 4.3 – Схема для получения выходной ВАХ n-p-n-транзистора для схемы с ОБ

Для пяти значений тока эмиттера $I_{\rm 3}$, получите значение тока коллектора I_K соответствующие напряжению коллектор-база $U_{K B}$ (таблица 4.2). В соответствии с полученными данными постройте семейство выходных характеристик $I_K = f(U_{K B})$ при $I_{\rm 3} = {\rm const.}$

Таблица 4.2 Соответствие тока коллектора I_K напряжению коллектор-база U_{KE} при фиксированном значении тока эмиттера

<mark>І</mark> э, мА	Uкб, В	0	0,2	0,5	1	5	10	15	20
10	Ік , мА								
20	<mark>Ік</mark> , мА								
30	<mark>Ік</mark> , мА								
40	<u>Iк</u> , мА								
50	Ік , мА								

Для построения выходных ВАХ при включении транзистора по схеме с ОЭ собрать схемы, которые приведены на рисунке 4.4.

Параметры функционального генератора (форма импульсов – треугольные): Frequency – 10 Hz, Duty cycle – 50%, Amplitude – 10 B, Offset – "+9B" для n-p-n транзистора или "-9B" для p-n-р транзистора. Настройки осциллографа: paзвертка - 1.00 мс/д (Y/T), X position=0.00, Чувствительность по каналу A – 1 B/д (Y position=0.00), режим DC. Чувствительность по каналу B – 5B/д (Y position=0.00), режим DC. Синхронизироваться в режиме AUTO, передним фронтом импульса.

а) для транзисторов структуры n-p-n; б) для транзисторов структуры p-n-p Рисунок 4.4 – Схема для получения выходной ВАХ для схемы с ОЭ:

Открыть осциллограф и включить схему. После появления двух осциллограмм $I_K(t)$ и $U_{K\ni}(t)$ остановить процесс моделирования. С помощью визирных линий осциллографа, составить таблицу соответствия тока коллектора I_K напряжению коллектор-эмиттер $U_{K\ni}$ при фиксированном значении тока базы (таблица 4.3).

Таблица 4.3 Соответствие тока коллектора I_к напряжению коллектор-эмиттер U_{KЭ} при фиксированном токе базы (для n-p-n транзистора)

І _{Б,} мА	U кэ, B	0	0,2	0,5	1	5	10	15	20
1	Ік, мА								
2	<u>Iк</u> , мА								
4	<u>Iк</u> , мА								
8	<u>Iк</u> , мА								
10	<u>Iк</u> , мА								

Примечание: для p-n-p транзистора полярность напряжения меняется на противоположную.

В соответствии с полученными данными построить семейство выходных характеристик $I_K=f(U_{K\ni})$ при $I_5=$ const.

Эксперимент 3 Исследование входной характеристики биполярного транзистора

Для схемы с ОБ построение входной характеристики выполняется с помощью схемы на рис.4.5. Составить таблицу соответствия тока эмиттера $I_{\mathcal{F}}$ напряжению база-эмиттер $U_{\mathcal{F}\mathcal{F}}$ для двух значений напряжения коллектор-база (таблица 4.4).

Рисунок 4.5 – Схема для исследования входной ВАХ n-p-n-транзистора в схеме с ОБ

Таблица 4.4 Соответствие тока эмиттера Іэ напряжению база-эмиттер U_{БЭ} при фиксированном значении напряжения коллектор-база U_{КБ}

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Uкб,В	І э, мА	0	5	10	15	20	25
$10 U_{F3}, B$	0	U _{БЭ} , В						
	10	U _{БЭ} , В						

В соответствии с полученными данными построить семейство входных характеристик $I_5=f(U_{53})$ при $U_{K5}=$ const.

Для схемы с ОЭ построение входной характеристики выполняется с помощью схемы на рисунке 4.6.

Параметры функционального генератора (форма импульсов – треугольные): Frequency – 100 Hz, Duty cycle – 50%, Amplitude – 10 B, Offset – "+9B" для n-p-n транзистора или "-9B" для p-n-р транзистора.

Настройки осциллографа: развертка - 1.00 мс/д (Y/T), X position=0.00, Чувствительность по каналу A – 1 B/д (Y position=0.00), режим DC. Чувствительность по каналу B – 5B/д (Y position=0.00), режим DC. Синхронизация – режим AUTO, передним фронтом импульса.

Открыть осциллограф и включить схему. После появления двух осциллограмм $I_{\rm b}(t)$ и $U_{\rm b}(t)$ остановить процесс моделирования. С помощью визирных линий осциллографа составить таблицу соответствия тока базы $I_{\rm b}$ напряжению база-эмиттер $U_{\rm b}$ при фиксированном значении напряжения коллектор-эмиттер (таблица 4.5).

б)

a) для транзисторов структуры n-p-n; *б*) для транзисторов структуры p-n-p Рисунок 4.6 – Схема для исследования входной ВАХ для схемы с ОЭ:

Таблица 4.5 Соответствие тока базы I_{5} напряжению база-эмиттер U_{53} при фиксированном значении напряжения коллектор-эмиттер U_{K3} (для n-p-n транзистора)

U _K ,B	U_{b} , B	0	0,4	0,6	0,8	1,0	1,2
0	І Б, мА						
5	<mark>І</mark> Б, мА						
10	І _Б , мА						

Примечание: для p-n-p транзистора полярность напряжений изменяется на противоположную.

В соответствии с полученными данными построить семейство входных характеристик $I_{B}{=}f(U_{\text{Б}{>}})$ при $U_{\text{K}{>}}{=}\text{const}$.

Эксперимент 4 Транзистор в режиме диода Собрать схему

Sectronics Workbench Professional Edition	
File Edit Circuit Analysis Window Help	
₽- \$+K \$\$\$\$\$\$ BB B D M B	Pause
Untitled	
Function Generator Frequency Di Hitz Trequency Di	
Ready 761.93 ms Temp: 27	
ИК (С) 🔁 🔁 🖳 🖉 🖉	* 1:15 16.08.2012

Рисунок 4.7

2 Включите схему. Получить ВАХ диода на экране осциллографа.

Эксперимент 5 Исследование выходной характеристики полевого транзистора с управляющим p- n переходом

В соответствии с полученным от преподавателя вариантом (таблица 4.10) выбрать транзистор из библиотеки элементов. Собрать схему, которая приведена на рисунке 4.8.

Параметры функционального генератора (форма импульсов – треугольные): Frequency – 100 Hz, Duty cycle – 50%, Amplitude – 10 B, Offset – "+9B" для транзистора с каналом n-типа или "-9B" для транзистора с каналом p-типа.

Настройки осциллографа: развертка - 0.50 мс/д (Y/T), X position=0.00, Чувствительность по каналу А – 10 В/д (Y position=0.00), режим DC. Чувствительность по каналу В – 10мв/д (Y position=0.00), режим DC. Синхронизироваться в режиме AUTO, передним фронтом импульса.

а) для n-канальных транзисторов; б) для p-канальных транзисторов Рисунок. 4.8 – Схема для снятия выходной ВАХ транзистора

Открыть осциллограф и включить схему. После появления двух осциллограмм $I_C(t)$ и $U_{CH}(t)$ остановить процесс моделирования. Изображения осциллографа рекомендуется развернуть на весь экран. С помощью визирных линий осциллографа, составить таблицу соответствия тока стока I_C напряжению сток-исток U_{CH} при фиксированных значениях напряжения затвор-исток (таблица 6.1). По полученным данным построить семейство выходных характеристик $I_C=f(U_{CH})$ при $U_{3H}=const$.

Таблица 4.6 Соответствие тока стока I_C напряжению U_{CU} при фиксированном значении напряжения затвор-исток U_{3U} для транзистора с каналом n-типа

U _{3И} , В	Uси, В	0	0,5	1	2	4	8	12	16	20
0	<mark>I</mark> с, ма									
-0,5	<mark>I</mark> _C , ма									
-1	<mark>I</mark> _C , ма									
-1,5	<mark>I</mark> _C , ма									

Примечание: для транзисторов с каналом *р*-типа полярность напряжений изменяется на противоположную.

Эксперимент 2 Исследование передаточной характеристики полевого транзистора с управляющим p-n переходом

Собрать схему, которая приведена на рисунке 4.9.

Параметры функционального генератора (форма импульсов – треугольные): Frequency – 100 Hz, Duty cycle – 50%, Amplitude – 2 B, Offset – "-1В" для транзистора с каналом п-типа или "+1В" для транзистора с каналом р-типа.

Настройки осциллографа: развертка - 0.50 мс/д (Y/T), X position=0.00, Чувствительность по каналу А – 2 В/д (Y position=0.00), режим DC. Чувствительность по каналу В – 50мв/д (Y position=0.00), режим DC. Синхронизироваться в режиме AUTO, передним фронтом импульса.

а) для п-канальных транзисторов; б) для р-канальных транзисторов Рисунок 4.9 – Схема для снятия передаточной характеристики транзистора:

Открыть осциллограф и включить схему. После появления двух осциллограмл $I_C(t)$ и $U_{3U}(t)$ остановить процесс моделирования. С помощью визирных линий осциллографа, составить таблицу соответствия тока стока I_C напряжению затвор-исток U_{3U} (до $U_{3U.OTC}$) при фиксированных значениях напряжения сток-исток (таблица 4.7).

По полученным данным построить семейство передаточных характеристик полевого транзистора с n-p-переходом $I_C=f(U_{3H})$ при $U_{CH}=const$.

Таблица 4.7 Соответствие тока стока I_C напряжению затвор-исток U_{3U} при фиксированном значении напряжения сток-исток U_{CU} для транзистора с каналом n-типа (пример)

Uси, В	U _{3И} , В	0	-0,5	-1	-1,5	-2	-2,5	-3
10	<mark>I</mark> с,ма							
20	<mark>І</mark> с,ма							

Примечание: для транзисторов с каналом *р*-типа полярность напряжений изменяется на противоположную

Эксперимент 3 Исследование выходной характеристики МДП транзистора с индуцированным каналом.

В соответствии с полученным от преподавателя вариантом (таблица 4.11) выбрать транзистор из библиотеки элементов. Собрать схему, которая приведена на рисунке 4.10.

а) для п-канальных транзисторов; б) для р-канальных транзисторов Рисунок 4.10 – Схема для получения выходных ВАХ МДП транзистора с индуцированным каналом:

Параметры функционального генератора (форма импульсов – треугольные): Frequency – 100 Hz, Duty cycle – 50%, Amplitude – 10 B, Offset – "+9B" для транзистора с каналом п-типа или "-9B" для транзистора с каналом р-типа.

Настройки осциллографа: развертка - 1.00 мс/д (Y/T), X position=0.00, Чувствительность по каналу А – 10 В/д (Y position=0.00), режим DC. Чувствительность по каналу В – 1В/д (Y position=0.00), режим DC. Синхронизироваться в режиме AUTO, передним фронтом импульса.

Открыть осциллограф и включить схему. С помощью визирных линий осциллографа, составить таблицу соответствия тока стока I_C напряжению сток-исток U_Cи при фиксированных значениях напряжения затвор-исток (таблица 4.8).

Таблица 4.8 Соответствие тока стока I_C напряжению сток-исток U_{CU} при фиксированном значении напряжения затвор-исток U_{3U} для транзистора с каналом n-типа.

U _{3И} , В	Uси, B	0	1	2	3	4	6	8	12	16	20
5	<mark>I</mark> _C , ма										
10	<mark>I</mark> с, ма										
15	<mark>I</mark> с, ма										

Примечание: для транзисторов с каналом *p*-типа полярность напряжений изменяется на противоположную

По полученным данным построить семейство выходных характеристик МДП транзистора с индуцированным каналом $I_C=f(U_{CH})$ при $U_{3H}=const$.

Эксперимент 4 Исследование передаточной характеристики МДП транзистора с индуцированным каналом.

Собрать схему и установить настройки генератора, как показано на рисунке 4.11.

Параметры функционального генератора (форма импульсов – треугольные): Frequency – 100 Hz, Duty cycle – 50%, Amplitude – 10 B, Offset – "+9B" для транзистора с каналом п-типа или "-9B" для транзистора с каналом р-типа.

Настройки осциллографа: развертка - 1.00 мс/д (Y/T), X position=0.00, Чувствительность по каналу А – 10 В/д (Y position=0.00), режим DC. Чувствительность по каналу В – 2В/д (Y position=0.00), режим DC. Синхронизироваться в режиме AUTO, передним фронтом импульса.

С помощью визирных линий осциллографа, составить таблицу соответствия тока стока I_C напряжению затвор-исток U_{3И} при фиксированном значении напряжения стокисток (таблица 4.9). Начинать следует из такого значения напряжения U_{3И}, при котором I_C =0.

a) для n-канальных транзисторов; б) для p-канальных транзисторов Рисунок. 4.11 - Схема для снятия передаточной характеристики МДП транзистора:

Таблица 4.9 Соответствие тока стока I_C напряжению затвор-исток U_{34} при фиксированном значении напряжения сток-исток U_{CH} для транзистора с каналом n-типа

$U_{CH} = 10B$	U _{3И} , В				
	<mark>I</mark> с, ма	0			
$U_{CM} = 20B$	U _{3B} , B				
	<mark>I</mark> с, ма	0			

Примечание: для транзисторов с каналом *p*-типа полярность напряжений изменяется на противоположную

По полученным данным построить семейство передаточных ВАХ МДП транзистора.

		Значения напряжения						
Номер	Трананстор	Виходная х	ADALTADUCTURA	Передаточная				
варианта	гранзистор	Виходная х	арактеристика	характеристика				
		U _{3И} (В)	U _{СИ} (В)	U _{3И} (В)	U _{СИ} (В)			
1	2	3	4	5	6			
1	Motorola J1RFD9120	03.0	010	03.0	-10, -20			
2	Motorola J300	02.5	010	02.5	10, 20			
3	Motorola J1RFD9123	02.5	010	02.5	-10, -20			
4	Motorola J304	02.5	010	02.5	10, 20			
5	Motorola J2N5461	02.5	010	02.6	-10, -20			
6	Motorola J309	02.0	010	02.5	10, 20			
7	Motorola J2N5462	02.5	010	02.5	-10, -20			
8	Motorola J310	04.0	010	04.1	10, 20			
9	Motorola MPF970	08	010	08	-10, -20			
10	Motorola MMBF17	02.0	010	02.0	10, 20			
11	Motorola MPF971	03.5	010	03.6	-10, -20			
12	Motorola BF244B	01.5	010	01.5	10, 20			
13	Philips J174	07.0	010	07.15	-10, -20			
14	Motorola MMBF4391	04.5	010	04.6	10, 20			
15	Philips J175	03.5	010	03.6	-10, -20			
16	Motorola MMBF4392	03.5	010	03.5	10, 20			
17	Philips J176	02.0	010	02.3	-10, -20			
18	Motorola MMBF4416	05.0	010	05.5	10, 20			
19	Philips J177	01.5	010	01.8	-10, -20			
20	Motorola MMBF4856	03.5	010	03.5	10, 20			
21	National1 J2N2608	02.5	010	02.5	-10, -20			
22	Motorola MPF3822	02.5	010	02.6	10, 20			
23	National1 J2N2609	02.5	010	02.5	-10, -20			
24	Motorola MMBF5457	03.5	010	03.5	10, 20			
25	National1 J2N3329	02.5	010	02.75	-10, -20			
26	Motorola MMBF5486LT1	01.5	010	01.5	10, 20			
27	National1 J2N3330	04	010	03.0	-10, -20			
28	Motorola MPF102	03.0	010	03.0	10, 20			
29	National1 J2N3331	05	010	05.2	-10, -20			
30	Motorola MPF4393	04.5	010	04.5	10, 20			

T_{-}	Π		
1аолица 4.10 -	• Полевые т	ранзисторы с	рование в справот в С

Примечание. Четные номера по списку – транзисторы с каналом N типа, нечетные – с каналом P типа.

		Значения напряжения						
Номер	_			Передаточная				
варианта	Транзистор	Виходная ха	рактеристика	характеристика				
1		U _{3И} (В)	U _{СИ} (В)	U _{3И} (B)	U _{СИ} (В)			
1	2	3	4	5	6			
1	zetex BSS84	-5,-10,-15	030	015	-10,-20			
2	intrntl2 IRF510	5,10,15	030	015	10,20			
3	zetex ZVP2106	-5,-10,-15	030	015	-10,-20			
4	intrntl2 IRF520	5,10,15	030	015	10,20			
5	zetex ZVP2106G	-5,-10,-15	030	015	-10,-20			
6	intrntl2 IRF520n	5,10,15	030	015	10,20			
7	zetex ZVP3306	-5,-10,-15	030	015	-10,-20			
8	intrntl2 IRF530	5,10,15	030	015	10,20			
9	zetex ZVP4424A	-5,-10,-15	060	015	-10,-20			
10	intrntl2 IRF530n	5,10,15	030	015	10,20			
11	national NDT454P	-5,-10,-15	020	015	-10,-20			
12	intrntl2 IRF540	5,10,15	030	015	10,20			
13	national NDC7001P	-5,-10,-15	030	015	-10,-20			
14	intrntl2 IRF540n	5,10,15	030	015	10,20			
15	national NDC7003P	-5,-10,-15	030	015	-10,-20			
16	zetex ZVN4106	5,10,15	030	015	10,20			
17	national NDH8447	-5,-10,-15	020	015	-10,-20			
18	zetex ZVN4210	5,10,15	030	015	10,20			
19	national NDT452P	-5,-10,-15	030	015	-10,-20			
20	zetex ZVN4306	5,10,15	030	015	10,20			
21	national ND9435	-5,-10,-15	020	015	-10,-20			
22	zetex ZVN4310	5,10,15	030	015	10,20			
23	national NDT2955	-5,-10,-15	030	015	-10,-20			
24	zetex ZVN4424A	5,10,15	030	015	10,20			
25	philips BST100	-5,-10,-15	060	015	-10,-20			
26	zetex ZVN2106	5,10,15	030	015	10,20			
27	philips BST110	-5,-10,-15	060	015	-10,-20			
28	zetex ZVN3306	5,10,15	030	015	10,20			
29	philips BST120	-5,-10,-15	060	015	-10,-20			
30	zetex ZVN3310	5,10,15	030	015	10,20			

Таблина 4.11 -	МЛП т	ранзисторь	ыс	инлуции	ованным	каналом.
таолица птт	IVIZII I	panoneropt		ппдуци	/ Dumbin	nullasioni.

Примечание. Четные номера по списку – транзисторы с каналом N типа, нечетные – с каналом P типа.

Вопросы

1. В чем состоит принцип действия биполярного транзистора?

- 2. Приведите формулы, которые показывают соотношение токов в биполярном транзисторе.
- 3. Перечислите режимы работы биполярного транзистора и объясните их.

4. Какие схемы включения транзисторов Вы знаете? Объясните их достоинства и недостатки.

5. Назовите основные параметры биполярных транзисторов.

6. Объясните статические характеристики биполярных транзисторов и их зависимость от температуры.

7. Чем определяются частотные свойства биполярных транзисторов?

Устройство и принцип работы полевого транзистора с р-п переходом.

8. Устройство и принцип работы МДП-транзистора с встроенным каналом.

9. Постройте ВАХ МДП-транзистора с встроенным каналом, объясните их.

10. Устройство и принцип работы МДП-транзистора с индуцированным каналом.

11 Что такое «режим обогащения и режим обеднения» в МДП-транзисторах ?

12 Что такое пороговое напряжение и напряжение отсечки?

13 Какую роль играет подложка в МДП-транзисторах?

14 В чем преимущество полевых транзисторов по сравнению с биполярными ?

15 В чем отличие биполярного от униполярного транзисторов?

ЛАБОРАТОРНАЯ РАБОТА №5

Тема: Транзисторные усилители и транзисторные ключи

Цель работы: Получить экспериментальным путем характеристики транзисторного усилителя и исследовать работу транзисторного ключа

Ход работы: Эксперимент 1 1. Собрать схему Electronics Workbench Professional Edition File Edit Circuit Analysis Window Help ⊘ ⊖ € 80% • ? o l ⊕. – + < 🖉 🖉 🖾 🗃 🗃 🗊 👜 ∎⊷ Pause c10_010.ca4 Rc k Ohm Ec 18 \ R2 I 0 k Ohm C2 1 uF Uout ╢ RL 200 k Ohm 1 uF ╢ Q1 2N3904 R1 k Ohm Re 360 Ohm 470 uF Temp: 27 Read Ø 0 M æ RU 🔺 😼 🛱 🚜 🕩 13.04.20 1

Рисунок 5.1 Схема усилителя с ОЭ.

2. Убедиться в том, что схема является усилительной. Занести соответствующие характеристики в отчет.

3. Снять АЧХ усилителя, привести в отчете АЧХ усилительного каскада, определить $f_{\rm H}$, $f_{\rm B}$; коэффициент усиления транзисторного усилителя на частоте $f_{\rm cp}$.

4 Исследовать влияние температуры на коэффициент усиления

5 Исследовать работу выходной разделительной емкости, подключив осциллограф к выходу усилителя и коллектору транзистора. Полученные осциллограммы привести в отчете.

Эксперимент 2

1. Собрать схему

Рисунок 5.2 Схема усилителя с ОЭ

2. Убедиться в том, что схема является усилительной. Занести соответствующие характеристики в отчет.

3. Снять АЧХ усилителя, привести в отчете АЧХ усилительного каскада, определить $f_{\rm H}$, $f_{\rm B}$; коэффициент усиления транзисторного усилителя на частоте $f_{\rm cp}$.

4 Исследовать влияние температуры на коэффициент усиления

Эксперимент 3

1. Собрать схему

Рисунок 5.3 Схема усилителя с ОК.

2. Включить схему и исследовать работу усилителя, определив коэффициент усиления, входное и выходное сопротивления.

Эксперимент 3 1. Собрать схему

Рисунок 5.4 Схема дифференциального усилителя

2. Включить схему.

3. Исследуйте зависимость коэффициента усиления от фазового соотношения входных сигналов.

4. Постройте график полученной зависимости.

Эксперимент 4 Исследование ключа на биполярном транзисторе

В соответствии полученному от преподавателя варианта (таблица 5.1) выбрать транзистора из библиотеки элементов.

Исследование динамических параметров ключа

Собрать схему, которая приведена на рисунке 5.5.

Параметры функционального генератора (форма импульсов – прямоугольные): Frequency – 100 кHz, Duty cycle – 50%, Amplitude – 2,5 B, Offset – "+2,5B" для n-p-n транзистора или "-2,5B" для p-n-р транзистора. Для p-n-р транзистора полярность напряжения питания изменяется на противоположную.

Настройки осциллографа: развертка - 0.10 мкс/д (Y/T), X position=0.00, Чувствительность по каналу А – 2 В/д (Y position=0.00), режим DC. Чувствительность по каналу В – 2В/д (Y position=-3.00), режим DC. Синхронизироваться в режиме AUTO, передним фронтом импульса.

Рисунок 5.5 – Схема для исследования ключа на биполярном транзисторе

Включить схему. Получив осциллограммы прекратить процесс моделирования .

Зарисовать осциллограмлы входного и выходного сигналов ключа и измерить такие динамические параметры ключа:

- tзад время задержки включения;
- tф время формирования фронта коллекторного тока;
- tрасс время рассасывания избыточного заряда в области базы;
- tсп время формирования спада коллекторного тока.

Рисунок 5.6 – Форма входного и выходного сигналов ключа на биполярном транзисторе

Исследование передаточной характеристики ключа

В схеме (рисунок 5.5) установить форму импульсов: "треугольные". Включить режим моделирования. С помощью визирных линий построить передаточную характеристику $U_{BbIX}=f(U_{BX})$ ключа при 0< $U_{BX}<U_{\Pi UT}$. Определить значения входного напряжения, которые определяют границы высокого и низкого значений выходного напряжения.

Эксперимент 5 Исследование ключа на биполярном транзисторе с диодом Шоттки

Собрать схему, показанную на рисунке 5.7, использовать диод Шоттки FQ из библиотеки int_shot

Параметры функционального генератора (форма импульсов – прямоугольные): Frequency – 100 кHz, Duty cycle – 50%, Amplitude – 2,5 B, Offset – "+2,5B" для n-p-n транзистора или "-2,5B" для p-n-р транзистора. Для p-n-р транзистора полярность напряжения питания изменяется на противоположную.

Настройки осциллографа: развертка - 0.10 мкс/д (Y/T), X position=0.00, Чувствительность по каналу А – 2 В/д (Y position=0.00), режим DC. Чувствительность по каналу В – 2В/д (Y position=-3.00), режим DC. Синхронизироваться в режиме AUTO, передним фронтом импульса.

Рисунок 5.7 – Схема для исследования ключа на биполярном транзисторе с диодом Шоттки

Включить режим моделирования. Зарисовать осциллограмми входного и выходного сигналов. Измерить динамические параметры ключа.

Эксперимент 6 Исследования КМОП - ключа

В соответствии с полученным от преподавателя вариантом (таблица 5.2) выбрать транзисторы из библиотеки элементов и напряжение питания.

Исследование динамических параметров ключа

Составить схему, которая показана на рисунке 5.8.

Параметры функционального генератора (форма импульсов – прямоугольные): Frequency – 200 кHz, Duty cycle – 50%, Amplitude – 10 B, Offset – 10B. Настройки осциллографа: paзвертка - 0.50 мкс/д (Y/T), X position=0.00, Чувствительность по каналу A – 10 B/д (Y position=0.00), режим DC. Чувствительность по каналу B – 10B/д (Y position=-2.40), режим DC. Синхронизироваться в режиме AUTO, передним фронтом импульса.

Рисунок 5.8 – Схема для исследования КМОП - ключа при U_{ПИТ}=20 В

Включить режим моделирования, получив осциллограммы сигналов выключить режим моделирования. Зарисовать осциллограммы входного и выходного сигналов и провести измерение продолжительности этапов переключения: времени формирования фронта и времени формирования спада.

Исследование передаточной характеристики ключа

В схеме на рисунке 5.8 установить форму импульсов: "треугольные". Включить режим моделирования. С помощью визирных линий, построить передаточную характеристику $U_{BbIX}=f(U_{BX})$ ключа при 0< $U_{BX}<U_{\Pi UT}$. Определить значения входного напряжения, которые соответствуют границам высокого и низкого значений выходного напряжения.

	- aprimitizi sudu i dini ile elledez		in priori i panono
Номер варианта	Библиотека	Транзистор	Uпит, В
1	2n	2N2218	5
2	2n	2N2222	10
3	2n	2N2222A	15
4	2n	2N4401	5
5	zetex	BCW72	8
6	motorol1	BC107	15
7	motorol1	BC140-10	5
8	motorol2	BC237	10
9	motorol3	BFS17	15
10	motorol3	MMBR571	5
11	nation11	D40D1	10
12	nation11	MPQ100	15
13	philips1	BC140	5
14	philips2	JC546	10
15	siemens	T89	15

Таблица 5.1 – Варианты задач для исследования ключа на биполярном транзисторе

Номер варианта	Библиотека	Транзистор1	Библиотека	Транзистор2	Uпит, В
1	zetex	ZVP4424A	national	NDB405B	5
2	zetex	ZVP4424A	zetex	ZVN4310	10
3	zetex	ZVP4424A	zetex	ZVN4306	15
4	zetex	ZVP4424A	zetex	ZPV4210	5
5	zetex	ZVP4424A	zetex	ZPV4106	10
6	zetex	ZVP4424A	zetex	ZVN3310	15
7	zetex	ZVP4424A	zetex	ZVN3306F	5
8	zetex	ZVP4424A	zetex	ZVN3306	10
9	zetex	ZVP4424A	zetex	ZVN2106G	15
10	zetex	ZVP4424A	zetex	ZVN2106	5
11	zetex	ZVP4424A	zetex	ZVN0124	10
12	zetex	ZVP4424A	zetex	VN10LF	15
13	zetex	ZVP4424A	zetex	BS170	5
14	philips	BSP204	zetex	2N7002	10
15	philips	BSP204	zetex	2N7000	15
16	philips	BSP204	philips	BSS123	5
17	philips	BSP204	national	NDB4050	10
18	philips	BSP204	national	NDB405A	15
19	philips	BSP204	national	NDB405AE	5
20	philips	BSP204	national	NDB405B	10
21	philips	BSP204	national	NDC631N	15
22	philips	BSP204	national	NDH831N	5
23	philips	BSP204	national	NDP4050	10
24	philips	BSP204	national	NDP7060	15

Таблица 5.2 – Варианты задач для исследования КМОП- ключа

Вопросы

1. Каково отличие практического и теоретического значений коэффициента усиления по напряжению?

2. Какова разность фаз между входным и выходным синусоидальными сигналами в усилителе с ОЭ? с ОК?

3. Как влияет входное сопротивление на коэффициент усиления по напряжению?

4. Какова связь между входным напряжением (узел U_{BX}) и напряжением на базе (узел П_Б) при включении между ними сопротивления?

5. Каково отличие практического и теоретического значений входного сопротивления для усилителей по переменному току?

7. Какое влияние оказывает понижение сопротивления нагрузки на коэффициент усиления по напряжению?

8. Какова связь между выходным сопротивлением усилителя и сопротивлением в цепи коллектора R_K? Как влияет сопротивление Rэ на коэффициент усиления по напряжению усилителя?

10.Каково отличие практического и теоретического значений напряжения U_B по постоянному току?

11.Каково отличие практического и теоретического значений напряжения U_Э по постоянному току?

12.Каково отличие практического и теоретического значений коэффициента усиления по напряжению усилителя с ОК? Почему значение коэффициента усиления по напряжению меньше единицы?

13.Каково отличие практического и теоретического значений входного сопротивления по переменному току усилителя с ОК? Велико ли это значение?

14.Велико ли значение выходного сопротивления усилителя с ОК?

15.Какова разность фаз входного и выходного синусоидальных сигналов?

16.В чем заключено главное достоинство схемы усилителя с ОК? В чем главное назначение этой схемы?

17. Назначение транзисторного ключа с точки зрения цифровой схемотехники.

ЛАБОРАТОРНАЯ РАБОТА №6

Тема: Схеми на базе операционного усилителя

Цель работы: Исследовать схемы на базе ОУ и определить их основные параметры.

Ход работы:

Эксперимент 1. Работа усилителя в режиме усиления синусоидального напряжения.

Собрать схему

Рассчитайте коэффициент усиления напряжения $K_{\rm Y}$ усилителя по значениям параметров компонентов схемы. Включите схему. Измерьте амплитуду входного $U_{\rm BX}$ и выходного $U_{\rm BbIX}$ синусоидального напряжения, постоянную составляющую выходного напряжения $U_{0\rm BbIX}$ и разность фаз между входным и выходным напряжением. По результатам измерений вычислите коэффициент усиления по напряжению $K_{\rm Y}$ усилителя. Результаты занесите в отчет.

Используя значение входного напряжения смещения U_{CM} полученное в эксперименте 1 и найденное значение коэффициента усиления, вычислите постоянную составляющую выходного напряжения U_{0BЫX}. Результаты вычислений также занесите в отчет.

Эксперимент 2. Исследование влияния параметров схемы на режим её работы.

Установите значение сопротивления R1 равным 10 кОм, амплитуду синусоидального напряжения генератора - 100 мВ. Включите схему. Для новых параметров мы повторите все измерения и вычисления эксперимента 5. Результаты занесите в отчет.

Эксперимент 3 Исследовать работу активных фильтров на операционном усилителе Собрать схему ФНЧ

Получить амплитудно-частотную характеристику и фазово-частотную характеристику ФНЧ и объяснить их поведение. Определить частоту среза.

Получить амплитудно-частотную характеристику и фазово-частотную характеристику ФВЧ . Объяснить их поведение. Определить частоту среза.

Получить амплитудно-частотную характеристику и фазово-частотную характеристику полосового фильтра и объяснить их поведение. Определить полосу пропускания

Эксперимент 4. Переходный процесс в схеме интегратора.

Соберите и включите схему. Зарисуйте осциллограммы входного и выходного напряжения схемы при подаче на вход напряжения в виде последовательности прямоугольных импульсов в отчет. Измерьте амплитуду входного напряжения и определите по осциллограмме скорость изменения выходного напряжения. Для установившегося процесса измерьте амплитуду выходного напряжения. Результаты запишите в отчет.

Эксперимент 5. Влияние амплитуды входного напряжения на переходный процесс в схеме интегратора.

В схеме интегратора установите амплитуду генератора равной 2 В. Включите схему. Зарисуйте осциллограммы входного и выходного напряжения в отчете. Измерьте амплитуду входного напряжения и определите по осциллограмме скорость изменения выходного напряжения. Сравните осциллограммы выходного напряжения, полученного в этом предыдущем экспериментах. Для установившегося процесса измерьте амплитуду выходного напряжения. Результаты занесите в отчет.

Эксперимент 6. Влияние параметров схемы на переходный процесс в схеме интегратора.

a). В схеме установите сопротивление R₁ равным 5 кОм, амплитуду генератора 5В. Включите схему. Зарисуйте осциллограммы входного и выходного напряжения в отчет. Запишите амплитуду входного напряжения и определите по осциллограмме скорость изменения выходного напряжения в начале процесса, сравните осциллограмму выходного напряжения, полученную в данном эксперименте с осциллограммой, полученной в эксперименте 1.

б). В схеме установите емкость конденсатора равной 0.02 мкФ. Включите схему. Зарисуйте осциллограммы входного и выходного напряжения в отчет. Запишите амплитуду входного напряжения и определите по осциллограмме скорость изменения выходного напряжения в начале процесса. Сравните осциллограмму выходного напряжения, полученную в данном эксперименте, с осциллограммой, полученной в эксперименте 1.

Эксперимент 7. Переходный процесс в схеме дифференциатора на ОУ.

 а). Соберите и включите схему. Зарисуйте осциллограммы входного и выходного напряжения в отчет. По полученным осциллограммам определите скорость изменения входного напряжения и амплитуду выходного напряжения, результат запишите в отчет.
 б). По заданным параметрам схемы и найденному значению скорости изменения входного напряжения рассчитайте амплитуду выходного напряжения. Результат запишите в отчет.

Эксперимент 8. Влияние частоты входного напряжения на выходное напряжение дифференциатора.

a). В схеме установите частоту генератора равной 2 кГц. Включите схему. Зарисуйте осциллограммы входного и выходного напряжения в отчет. По полученным осциллограммам определите скорость изменения входного напряжения и амплитуду выходного напряжения. Результаты запишите в отчет.

б). По заданным параметрам схемы и найденному значению скорости изменения входного напряжения рассчитайте амплитуду выходного напряжения. Результат запишите в отчет.

Эксперимент 9. Влияние сопротивления в цепи обратной связи на выходное напряжение дифференциатора.

a). В схеме восстановите начальную частоту генератора, а величину сопротивления в цепи обратной связи установите равной 10 кОм. Включите схему. Зарисуйте осциллограммы входного и выходного напряжения в отчет. По полученным осциллограммам определите скорость изменения входного напряжение амплитуду выходного напряжения. Результат запишите в отчет.

б). По заданным параметрам схемы и найденному значению скорости изменения входного напряжения рассчитайте амплитуду выходного напряжения. Результат запишите в отчет.

Эксперимент 10. Влияние емкости конденсатора на выходное напряжение дифференциатора.

а). В схеме восстановите первоначальные значения параметров схемы, а величину емкости конденсатора установите равной 0.5 мкФ. Включите схему. После установления процесса зарисуйте осциллограммы входного и выходного напряжения в отчет. По полученным осциллограммам определите скорость изменения входного напряжения и амплитуду выходного напряжения. Результат запишите в отчет. Сравните осциллограмму выходного напряжения, полученную в данном эксперименте, с осциллограммой, полученной в предыдущем эксперименте.

б). По заданным параметрам схемы и найденному значению скорости изменения входи напряжения рассчитайте амплитуду выходного напряжения. Результат запишите в отчет.

Эксперимент 11 Исследовать работу сумматора на операционном усилителе Собрать схему сумматора

Изменяя входные напряжения проверьте правильность работы схемы. Результаты в виде таблицы занесите в отчёт.

Эксперимент 12 Исследовать работу аналогового компаратора на операционном усилителе

Собрать схему компаратора

Включите схему. Получите осциллограмму вход-выход и определите пороговое напряжение.

Вопросы

1 Какие параметры схемы (эксперимент 1) влияют на ее коэффициент усиления?

2 Как влияет коэффициент усиления (эксперимент 1) на постоянную составляющую выходного напряжения?

3 Особенности активных фильтров по сравнению с пассивными (см лабораторную работу №1).

4 Почему схема эксперимента 4 является дифференцирующим каскадом?

5 От параметров каких компонентов схемы эксперимента 4 зависит величина выходного напряжения при подаче на вход линейно изменяющегося напряжения? 6 Зависит ли выходное напряжение дифференцирующего каскада от скорости изменения входного напряжения? Пояснить.

7 Зависит ли выходное напряжение дифференцирующего каскада от величины сопротивления в цепи обратной связи?

8 Зависит ли выходное напряжение дифференцирующего каскада

эксперимента 4 от емкости конденсатора С? 9 Почему выходное напряжение дифференцирующего каскада пропорционально отрицательному значению производной входного напряжения?

10 Опишите работу сумматора на ОУ.

11 пишите работу аналогового компаратора на ОУ.

ЛАБОРАТОРНАЯ РАБОТА № 7

Тема: Источники питания и стабилизаторы напряжения

Цель работы: Исследовать предлагаемые схемы источников питания и стабилизаторов напряжения

Ход работы:

Эксперимент 1. 1.Собрать схемы согласно рисунков 7.1 – 7.3. Все приборы взять из библиотеки реальных компонент.

Рисунок 7.1

Рисунок 7.2

Рисунок 7.3

2. С помощью осциллографа измерить зависимость напряжения от времени в точке 1 и 2. Результат зарисовать в отчет.

3. Добавить в схему ёмкостной фильтр и изменяя значение его ёмкости исследовать выходной сигнал. Объяснить результаты.

Эксперимент 2.

1.Собрать схему параметрического стабилизатора напряжения согласно рисунка 7.4. Все приборы взять из библиотеки реальных компонент.

Рисунок 7.4

2. Исследовать работу схемы, изменяя входное напряжение от4 до 10в.

Эксперимент 3.

1.Собрать схему регулируемого стабилизированного источника питания согласно рисунка 7.5. Все приборы взять из библиотеки реальных компонент.

Рисунок 7.5

2.Экспериментально определить пределы регулировки напряжения.

3. Экспериментально определить диапазон входного напряжения при котором источник является стабилизированным

Вопросы

1. По осциллограммам выходного напряжения, определите, осуществляет ли выпрямительный мост однополупериодное или двуполупериодное выпрямление?

2 Как различаются переменные составляющие напряжений на входе и выходе выпрямительного моста?

3 Чем отличаются выходные напряжения в схемах с выпрямительным мостом и двуполупериодным выпрямителем с отводом от средней точки трансформатора?
4 Сравните максимальные обратные напряжения на диодах для схем выпрямительного моста и двуполупериодного выпрямителя с отводом средней точки трансформатора.

5 Одинаковы ли среднее значение выходного напряжения U_d (постоянная составляющая) выпрямительного моста и двуполупериодного выпрямителя?

6 Одинаковы ли частоты входного и выходного напряжения выпрямительного моста? Как они соотносятся с частотами входного и выходного напряжений двуполупериодного выпрямителя?

7 Превышает ли максимальное обратное напряжение U_{max} на диоде мостового выпрямителя значение, предельно допустимое для диода?

8 Одинаковы ли среднее значение выходного напряжения U_d в схеме выпрямительного моста, вычисленное по формуле и измеренное с помощью мультиметра?

9 По осциллограммам выходного напряжения, определите, осуществляет ли выпрямительный мост однополупериодное или двуполупериодное выпрямление? 10 Как различаются переменные составляющие напряжений на входе и выходе выпрямительного моста? 11 Чем отличаются выходные напряжения в схемах с выпрямительным мостом и двуполупериодным выпрямителем с отводом от средней точки трансформатора?

12 Сравните максимальные обратные напряжения на диодах для схем выпрямительного моста и двуполупериодного выпрямителя с отводом средней точки трансформатора.

13 Одинаковы ли среднее значение выходного напряжения U_d (постоянная составляющая) выпрямительного моста и двуполупериодного выпрямителя?

14 Одинаковы ли частоты входного и выходного напряжения выпрямительного моста? Как они соотносятся с частотами входного и выходного напряжений двуполупериодного выпрямителя?

15 Превышает ли максимальное обратное напряжение U_{max} на диоде мостового выпрямителя значение, предельно допустимое для диода?

16 Одинаковы ли среднее значение выходного напряжения U_d в схеме выпрямительного моста, вычисленное по формуле и измеренное с помощью мультиметра?

17 Назначение стабилитрона, его ВАХ и схема включения.

Лабораторная работа №8

Тема: Генераторы

Цель работы: Исследовать схемы различных генераторов и влияние на их работу параметров частотозадающих цепей

Эксперимент 1 Исследовать работу генератора Колпитца

1. Собрать схему Electronics Workbench Professional Edition - 6 File Edit Circuit Analysis Window Help • ? D ≣⊷ ⊕ - + < > > > > ₽ ₽ ₽ ₽ ₽ Untitled N.: 72 k Ohr 1 mH 2N2712 6 V 2 uF 2 k Ohm 367.87 ms Temp: 27 Ø **?** 0 ~`` M RU 🔺 🍾 🛱 🚮 🕠

Рисунок 8.1

2.Включить схему. Получить осциллограмму выходного сигнала и определить его параметры.

3. Меняя номинальные значения параметров частотозадающей цепи исследовать их влияние на параметры выходного сигнала.

4. Исследуйте влияние температуры на стабильность частоты.

Эксперимент 2 Исследовать работу генератора прямоугольных импульсов

2. Собрать схему

Рисунок 8.2

2.Включить схему. Получить осциллограмму выходного сигнала и определить его параметры.

3. Меняя номинальные значения параметров частотозадающей цепи исследовать их влияние на параметры выходного сигнала.

4. Исследуйте влияние температуры на стабильность частоты.

Эксперимент 3 Исследовать работу генератора Колпитца стабилизированного кварцевым резонатором

1.Собрать схему

Рисунок 8.3

2.Включить схему. Получить осциллограмму выходного сигнала и определить его параметры.

3. Исследуйте влияние температуры на стабильность частоты.

Эксперимент 4 Исследовать работу мультивибратора

1.Собрать схему

Рисунок 8.4

2.Включить схему. Получить осциллограмму выходного сигнала.

3. Меняя номинальные значения параметров частотозадающей цепи исследовать их влияние на параметры выходного сигнала.

Вопросы

1. Дать определение понятия генератор.

2. Структурная схема генератора.

3.Что такое условие амплитуд?

3.Что такое условие фаз?

4. Что такое кварцевый резонатор?

5. Влияние температуры на стабильность частоты генератора.

Лабораторная работа №9

Тема: Модуляторы и демодуляторы

Цель работы: Исследование видов модуляции и различных схем модуляторов и демодуляторов.

Эксперимент 1 Исследовать работу аналогового амплитудного модулятора 1 Собрать схему

Рисунок 9.1

2.Включить схему. Получить осциллограмму выходного сигнала.

3. По осциллограмме определить частоту несущей и огибающей.

Эксперимент 2 Исследовать работу амплитудного модулятора цифровых сообщений

1.Собрать схему

Рисунок 9.2

2.Включить схему. Получить осциллограммы информационного и выходного сигналов.

3. По осциллограмме определить частоту несущей и огибающей.

Эксперимент 3 Исследовать работу частотного модулятора цифровых сообщений 1.Собрать схему

Рисунок 9.3

2.Включить схему. Получить осциллограммы информационного и выходного сигналов. 3. Изменить амплитуду и частоту сигналов модуляции и несущей и установите их влияние на осциллограмму частотно-модулированного сигнала.

Эксперимент 4 Исследовать работу фазового модулятора цифровых сообщений 1.Собрать схему

2.Включить схему. Получить осциллограммы информационного и выходного сигналов.

Эксперимент 5 Исследовать работу аналогового амплитудного демодулятора 1.Собрать схему

Рисунок 9.5

2.Включить схему. Получить осциллограммы информационного и входного сигналов.

3. Путём подбора постоянной времени **RC-фильтра** добиться наименьшего искажения информационного сигнала.

Эксперимент 6 Исследовать работу радиопередатчика на 27 МГц

1.Собрать схему

Рисунок 9.6

2.Определить - какой вид модуляции используется.

3. По имеющейся принципиальной схеме (рисунок 9.6) построить структурную схему передатчика.

Вопросы

- 1. Что такое модуляция ?
- 2.Виды модуляции.
- 3.Что такое несущая?
- 3.Что такое детектирование?
- 4. Что такое демодулятор?
- 5. Используя какие виды модуляции можно передавать цифровые сообщения?

Список литературы

- 1. Карлащук В.И. Электронная лаборатория на IBM PC-М., «Солон» 2008.
- 2. У Титце, К Шенк, Полупроводниковая схемотехника.- М., «Мир», 2003
- 3. Кучумов А.И. Электроника и схемотехника-М., «Гелиос АРВ», 2004
- 4. Завадский В.А. Практикум по компьютерной электронике, К., «ТОО ВЕК», 2002.
- 5. Грабовски Б. Краткий справочник по электронике, М., «БМК», 2001.